

Acoustic Test Certificate

Tuesday August 27th, 2019

Supplier: Floortex (192-194 Hammond Road, Dandenong South, VIC, 3175, Australia)

Sample Description: 3mm Foam Underlay (tested with OZ Floors Engineered Floorboard)

Date Tested: July 2019 (Tested by FORAY Laboratories)

Test Method: AS/ISO 140:7-2006

Acoustic Test Data:

Acoustic Test Data: 1/3 Octave Band	Im	Impact Sound Pressure Level L'nT (dB)		
Centre Frequency (Hz)	Base Floor	OZ Floors Floorboard with 3mm Foam Underlay	ΔL'nT Test Sample	
100	56.9	55.9	1.0	
125	56.3	55.7	0.6	
160	62.4	60.3	2.1	
200	62.9	61.2	1.7	
250	58.9	57.4	1.5	
315	59.2	57.6	1.6	
400	57.6	55.7	1.9	
500	60.3	56.7	3.6	
630	61.7	55.4	6.3	
800	61.1	50.3	10.8	
1000	62.2	46.8	15.4	
1250	62.7	42.0	20.7	
1600	62.6	38.4	24.2	
2000	62.4	35.1	27.3	
2500	63.0	37.5	25.5	
3150	68.5	35.4	33.1	
4000	70.4	34.2	36.2	
5000	66.5	35.0	31.5	
	L' _{nT,w} = 70	L' _{nT,w} = 53	ΔL,w = 17	

The impact sound insulation performance of a system is denoted by a single value descriptor, the weighted impact sound insulation $L_{n,w}$ (for laboratory tested rating) or $L'_{nT,w}$ (for field tested rating). The single value descriptor allows for easy comparisons between different systems. The lower the number, the better the impact sound insulation performance.

The rating of the system is determined by comparing the measured noise levels in the receiving room against a set of reference values between one-third-octave band centre frequency ranges of 100Hz to 3150Hz, as specified in AS/NZS ISO 717.2-2004.

The base floor construction of 200mm concrete slab with 35mm furring channels and a single layer of 10mm standard plasterboard ceiling, achieved a weighted impact sound insulation rating of $L'_{nT,w}$ of 70.

The floor system consisting of the 3 mm thick foam underlay and 14 mm OZ Floors engineered Floorboardscovering on top of the base floor achieved a weighted impact sound insulation rating of $L'_{nT,w}$ of 53, improving the base floor performance of $\Delta L'_{nT,w}$ by 17 dB.

Dr. Vyt Garnys

PhD, BSc(Hons) AIMM, ARACI, ISIAQ

ACA, AIRAH, FMA

Managing Director and Principal Consultant

Tuan Duong B.Eng (Chemical) Consultant

CV2005049